Integrated Bicyclist Protection Systems - Potential of Head Injury Reduction Combining Passive and Active Protection Systems
نویسندگان
چکیده
In recent years both pedestrian passive and active safety systems, such as pedestrian bonnets/airbags and autonomous braking, have emerged on the market and are estimated to be effective to reduce injury of vulnerable road users in car crashes. A natural next step is to develop similar protection systems for bicyclists. The aim of this study was to investigate the potential bicyclist head injury reduction from passive and active protection systems compared to an integrated system. The German In-Depth Accident Study (GIDAS) database was queried from 1999 to 2014 for severely (AIS3+) head injured bicyclists when struck by passenger car fronts. This resulted in 34 cases where information was sufficient for both the pre-crash and the in-crash part of the event. The default passive protection system was designed to mitigate head injuries caused by the bonnet area, A-pillars, and the lower windscreen (instrument panel) area (deployable hood and windshield airbag). To estimate the hood and airbag performance risk reduction functions were used based on experimental tests with and without the systems. The active protection system was an autonomous braking system, which was activated one second prior to impact if the bicyclist was visible to a forward-looking sensor. Maximum speed reduction was estimated using road condition information in each case. The integrated system was a direct combination of the passive and active protection systems. Case by case the effect from each of the active, passive and integrated systems was estimated. For the integrated system, the influence of the active system on the passive system performance was explicitly modelled in each case. A sensitivity analysis was performed varying the coverage area of the passive protection system and the activation criteria of the active system. The integrated system resulted in 29%-62% higher effectiveness than the best single system of active respectively passive protection system in reducing the number of bicyclists sustaining severe (AIS3+) head injuries. These values were statistically tested and found to be significant. The study is based on representative data from Germany, but may not be representative to countries with a different car fleet or infrastructure. This study indicates that integrated systems of passive and active vulnerable road user countermeasures offer a significantly increased potential for head injury reduction compared to either of the two systems alone. INTRODUCTION World-wide it is estimated that over 500 000 pedestrians and bicyclists are killed annually in road traffic (Naci, Chisholm et al. 2009). Virtually all road pedestrian fatalities and a majority of the cyclist road fatalities are caused by crashes with vehicles (SIKA 2009). In larger European cities, bicycle transportation is increasing (ThiemannLinden 2010), likely due to congestion, fuel prices and an increasing awareness of its health benefits. Pedestrians and bicyclists already make up roughly half the traffic fatalities in urban areas in the EU (ERSO 2012), risking fatalities to increase with increased bicycle use. In research studies pedestrians have been the dominant subject group. Legal regulations as well as consumer rating tests for pedestrians have influenced car design during the last decade in Europe and Japan. Cars on these markets are now often equipped with energy absorbing bumpers and hoods, as well as deployable hoods. Furthermore,
منابع مشابه
Integrated Pedestrian Safety Assessment Procedure
Structural improvements at the vehicle front are state of the art in the field of pedestrian safety today and offer a basic passive protection. Meanwhile advanced safety systems have entered the market. Deployable systems, like the active bonnet or the windscreen airbag, further enhance the passive protection of passenger vehicles while systems of active safety such as autonomous emergency brak...
متن کاملResilience Enhancement of Active Distribution Networks Via Mobile Energy Storage Systems and Protection Coordination Consideration
Owing to the portability and flexibility of mobile energy storage systems (MESSs), they seem to be a promising solution to improve the resilience of the distribution system (DS). So, this paper presents a rolling optimization mechanism for dispatching MESSs and other resources in microgrids in case of a natural disaster occurrence. The proposed mechanism aims to minimize the total system cost b...
متن کاملAssessment of Active and Passive Technical Measures for Pedestrian Protection at the Vehicle Front
Structural improvements at the vehicle front are state of the art in the field of pedestrian safety today. But due to raising requirements further measures will be needed. The active bonnet for example is the first deployable system that has entered the market. Other passive safety systems, like the windscreen airbag, are part of current research. This applies also to systems of active safety s...
متن کاملHearing protection: surpassing the limits to attenuation imposed by the bone-conduction pathways.
With louder and louder weapon systems being developed and military personnel being exposed to steady noise levels approaching and sometimes exceeding 150 dB, a growing interest in greater amounts of hearing protection is evident. When the need for communications is included in the equation, the situation is even more extreme. New initiatives are underway to design improved hearing protection, i...
متن کاملToward the design of zero energy buildings (ZEB) in Iran: Climatic study
In this research, a combination of passive and active methods is used to design a nearly zero energy building in four major climatic regions of Iran, including cold, mild, dry-warm, and wet-warm ones. The annual energy consumption analysis is performed using DesignBuilder® software. The passive strategies include Trombe Wall, blue roof, and thermochromic windows, and the active methods are usin...
متن کامل